Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 11(1): 20307, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645894

RESUMO

With increasing utilization of comprehensive genomic data to guide clinical care, anticipated to become the standard of care in many clinical settings, the practice of diagnostic medicine is undergoing a notable shift. However, the move from single-gene or panel-based genetic testing to exome and genome sequencing has not been matched by the development of tools to enable diagnosticians to interpret increasingly complex or uncertain genomic findings. Here, we present gene.iobio, a real-time, intuitive and interactive web application for clinically-driven variant interrogation and prioritization. We show gene.iobio is a novel and effective approach that significantly improves upon and reimagines existing methods. In a radical departure from existing methods that present variants and genomic data in text and table formats, gene.iobio provides an interactive, intuitive and visually-driven analysis environment. We demonstrate that adoption of gene.iobio in clinical and research settings empowers clinical care providers to interact directly with patient genomic data both for establishing clinical diagnoses and informing patient care, using sophisticated genomic analyses that previously were only accessible via complex command line tools.


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Adulto , Algoritmos , Alelos , Bases de Dados Genéticas , Exoma , Testes Genéticos , Humanos , Internet , Masculino , Fenótipo , Receptores de Superfície Celular/genética , Análise de Sequência de DNA , Software , ATPases Vacuolares Próton-Translocadoras/genética , Sequenciamento do Exoma
3.
medRxiv ; 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33173897

RESUMO

With increasing utilization of comprehensive genomic data to guide clinical care, anticipated to become the standard of care in many clinical settings, the practice of diagnostic medicine is undergoing a notable shift. However, the move from single-gene or panel-based genetic testing to exome and genome sequencing has not been matched by the development of tools to enable diagnosticians to interpret increasingly complex genomic findings. A new paradigm has emerged, where genome-based tests are often evaluated by a large multi-disciplinary collaborative team, typically including a diagnostic pathologist, a bioinformatician, a genetic counselor, and often a subspeciality clinician. This team-based approach calls for new computational tools to allow every member of the clinical care provider team, at varying levels of genetic knowledge and diagnostic expertise, to quickly and easily analyze and interpret complex genomic data. Here, we present gene.iobio , a real-time, intuitive and interactive web application for clinically-driven variant interrogation and prioritization. We show gene.iobio is a novel and effective approach that significantly improves upon and reimagines existing methods. In a radical departure from existing methods that present variants and genomic data in text and table formats, gene.iobio provides an interactive, intuitive and visually-driven analysis environment. We demonstrate that adoption of gene.iobio in clinical and research settings empowers clinical care providers to interact directly with patient genomic data both for establishing clinical diagnoses and informing patient care, using sophisticated genomic analyses that previously were only accessible via complex command line tools.

4.
J Neurogenet ; 34(1): 69-82, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31965871

RESUMO

Neuronal development and memory consolidation are conserved processes that rely on nuclear-cytoplasmic transport of signaling molecules to regulate gene activity and initiate cascades of downstream cellular events. Surprisingly, few reports address and validate this widely accepted perspective. Here we show that Importin-α2 (Imp-α2), a soluble nuclear transporter that shuttles cargoes between the cytoplasm and nucleus, is vital for brain development, learning and persistent memory in Drosophila melanogaster. Mutations in importin-α2 (imp-α2, known as Pendulin or Pen and homologous with human KPNA2) are alleles of mushroom body miniature B (mbmB), a gene known to regulate aspects of brain development and influence adult behavior in flies. Mushroom bodies (MBs), paired associative centers in the brain, are smaller than normal due to defective proliferation of specific intrinsic Kenyon cell (KC) neurons in mbmB mutants. Extant KCs projecting to the MB ß-lobe terminate abnormally on the contralateral side of the brain. mbmB adults have impaired olfactory learning but normal memory decay in most respects, except that protein synthesis-dependent long-term memory (LTM) is abolished. This observation supports an alternative mechanism of persistent memory in which mutually exclusive protein-synthesis-dependent and -independent forms rely on opposing cellular mechanisms or circuits. We propose a testable model of Imp-α2 and nuclear transport roles in brain development and conditioned behavior. Based on our molecular characterization, we suggest that mbmB is hereafter referred to as imp-α2mbmB.


Assuntos
Encéfalo/fisiologia , Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Neurogênese/fisiologia , alfa Carioferinas/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/embriologia , Drosophila melanogaster , alfa Carioferinas/genética
5.
J Vis Exp ; (132)2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29553541

RESUMO

Several recent studies have illustrated the beneficial effects of living in an enriched environment on improving human disease. In mice, environmental enrichment (EE) reduces tumorigenesis by activating the mouse immune system, or affects tumor bearing animal survival by stimulating the wound repair response, including improved microbiome diversity, in the tumor microenvironment. Provided here is a detailed procedure to assess the effects of environmental enrichment on the biodiversity of the microbiome in a mouse colon tumor model. Precautions regarding animal breeding and considerations for animal genotype and mouse colony integration are described, all of which ultimately affect microbial biodiversity. Heeding these precautions may allow more uniform microbiome transmission, and consequently will alleviate non-treatment dependent effects that can confound study findings. Further, in this procedure, microbiota changes are characterized using 16S rDNA sequencing of DNA isolated from stool collected from the distal colon following long-term environmental enrichment. Gut microbiota imbalance is associated with the pathogenesis of inflammatory bowel disease and colon cancer, but also of obesity and diabetes among others. Importantly, this protocol for EE and microbiome analysis can be utilized to study the role of microbiome pathogenesis across a variety of diseases where robust mouse models exist that can recapitulate human disease.


Assuntos
Neoplasias do Colo/microbiologia , Microbioma Gastrointestinal/imunologia , Microbiota/imunologia , Animais , Modelos Animais de Doenças , Camundongos , Microambiente Tumoral
6.
Cell Rep ; 19(4): 760-773, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28445727

RESUMO

Environmental enrichment (EE) replicates mind-body therapy by providing complex housing to laboratory animals to improve their activity levels, behavior, and social interactions. Using a Tcf4Het/+ApcMin/+-mediated model of colon tumorigenesis, we found that EE vastly improved the survival of tumor-bearing animals, with differential effect on tumor load in male compared to female animals. Analysis of Tcf4Het/+ApcMin/+ males showed drastically reduced expression of circulating inflammatory cytokines and induced nuclear hormone receptor (NHR) signaling, both of which are common in the wound repair process. Interestingly, EE provoked tumor wound repair resolution through revascularization, plasma cell recruitment and IgA secretion, replacement of glandular tumor structures with pericytes in a process reminiscent of scarring, and normalization of microbiota. These EE-dependent changes likely underlie the profound improvement in survival of colon-tumor-bearing Tcf4Het/+ApcMin/+ males. Our studies highlight the exciting promise of EE in the design of future therapeutic strategies for colon cancer patients.


Assuntos
Neoplasias do Colo/patologia , Meio Ambiente , Imunoglobulina A/metabolismo , Cicatrização/fisiologia , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Alphaproteobacteria/isolamento & purificação , Alphaproteobacteria/fisiologia , Animais , Colo/microbiologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/mortalidade , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Microbiota , Neovascularização Fisiológica , Pericitos/citologia , Pericitos/metabolismo , Proteobactérias/isolamento & purificação , Proteobactérias/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Taxa de Sobrevida , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo
7.
PLoS One ; 5(12): e14332, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21179466

RESUMO

BACKGROUND: Dominant mutations in both human Presenilin (Psn) genes have been correlated with the formation of amyloid plaques and development of familial early-onset Alzheimer's disease (AD). However, a definitive mechanism whereby plaque formation causes the pathology of familial and sporadic forms of AD has remained elusive. Recent discoveries of several substrates for Psn protease activity have sparked alternative hypotheses for the pathophysiology underlying AD. CBP (CREB-binding protein) is a haplo-insufficient transcriptional co-activator with histone acetly-transferase (HAT) activity that has been proposed to be a downstream target of Psn signaling. Individuals with altered CBP have cognitive deficits that have been linked to several neurological disorders. METHODOLOGY/PRINCIPAL FINDINGS: Using a transgenic RNA-interference strategy to selectively silence CBP, Psn, and Notch in adult Drosophila, we provide evidence for the first time that Psn is required for normal CBP levels and for maintaining specific global acetylations at lysine 8 of histone 4 (H4K8ac) in the central nervous system (CNS). In addition, flies conditionally compromised for the adult-expression of CBP display an altered geotaxis behavior that may reflect a neurological defect. CONCLUSIONS/SIGNIFICANCE: Our data support a model in which Psn regulates CBP levels in the adult fly brain in a manner that is independent of Notch signaling. Although we do not understand the molecular mechanism underlying the association between Psn and CBP, our results underscore the need to learn more about the basic relationship between Psn-regulated substrates and essential functions of the nervous system.


Assuntos
Doença de Alzheimer/metabolismo , Proteína de Ligação a CREB/biossíntese , Sistema Nervoso Central/metabolismo , Drosophila/metabolismo , Regulação da Expressão Gênica , Presenilinas/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Proteína de Ligação a CREB/fisiologia , Cruzamentos Genéticos , Inativação Gênica , Mutação , Fenótipo , Interferência de RNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...